A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields
Abstract
Flow field design has an important role in proton exchange membrane fuel cell (PEMFC) due to its effect on the distribution of pressure, current density, temperature, heat and water management and PEMFC performance. In this paper, the sinusoidal flow field is examined and compared with straight-parallel configuration using a finite volume method based on non-isothermal, steady-state and multiphase model. A set of continuity, momentum, energy, species and electrochemical equations is solved by CFD commercial code with SIMPLE algorithm as a solution approach. The obtained results reveal that at an operating voltage, the maximum velocity and pressure drop for sinusoidal flow field are 1.18 and 6 times more than straight-parallel flow field at GDL/CL interface. Also, it is found that the current density and maximum power density for sinusoidal flow field are 0.65 and 0.32 w cm−2, respectively. Ultimately, the results indicated that the sinusoidal flow field has better performance in compared with straight-parallel flow field. © 2018, Akadémiai Kiadó, Budapest, Hungary.