Adaptive control of object path tracking and finger tip slippage in a multifingered robotic system
Abstract
Considering slippage between finger tips and an object, adaptive control synthesis of grasping and manipulating an object by a multi-fingered system is addressed in this paper. Slippage can occur due to many reasons such as disturbances, uncertainties in parameters and dynamics. In this paper, using a novel representation of friction and slippage dynamics, a new approach is introduced to analyze the system dynamics. Then an adaptive controller with a simple update rule is proposed to ensure the bounded trajectory tracking and slippage control, and at the same time to compensate for parameter uncertainties including coefficients of friction. The performance of the proposed adaptive controller is shown analytically and studied numerically. © 2008 by ASME.