Adaptive tracking with external force disturbance rejection for uncertain robotic systems
Abstract
This paper is concerned with the tracking control problem of robotic systems perturbed by time-varying parameters, unmodelled dynamics and external force (and moment) disturbances. The upper bound of system uncertainties and disturbances is not required for controller design. Also, no limitations are assumed on the speed of variation and the magnitude of unknown parameters and perturbations. An adaptive algorithm with simplicity and universality properties is proposed to ensure robust tracking. Presenting the closed loop stability proof analytically, the tracking controller is applied to a two-link robot manipulator and the simulation results are demonstrated to show the effectiveness of the method. © 2014 Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg.