Background
Type: Note

Can One Novel Lanthanide Complex and Its Nano-Encapsulated Compounds Afford Advances in Biological Inorganic Chemistry? A Biological Applications Study for Dysprosium (III) Complex and Its Nano-Encapsulated Compounds

Journal: Comments on Inorganic Chemistry (02603594)Year: 2022Volume: 42Issue: Pages: 337 - 367
Majidi S. Aramesh-Boroujeni Z.Moghadam M.a Jahani S.
DOI:10.1080/02603594.2022.2075859Language: English

Abstract

In this paper, the biological applications of synthetic dysprosium(III) complex, with 4,5-diazafluoren-9-one (dafone) ligand, including DNA/BSA interaction, antibacterial and anticancer activity were studied in vitro. The bovine serum albumin (BSA) and fish DNA (FS-DNA) binding of the dysprosium complex were studied by multi-spectrophotometric as well as computational calculation. Its DNA and BSA binding ability were estimated by fluorescence, absorption, circular dichroism spectroscopy, and viscosity measurements (only for DNA). The Dy-complex binds to DNA and BSA presenting high binding constants. For both DNA/BSA binding, the negative signs of thermodynamic parameter confirmed that hydrogen bonds and van der Waals forces play a main role in the interaction process. The competitive experiments with ethidium bromide (EtBr) and rhodamine B exhibited that the Dy-complex interacts with DNA via groove binding. The BSA competitive experiments showed that Dy-complex interacts with site 3 of BSA, which was completely arranged by docking studies. This complex showed high antimicrobial and cytotoxicity. Besides, nanocarriers of Dy-complex were produced, and the anticancer activities of these compounds were measured. (This paper provides a manifestation of a new tradition by which Comments on Inorganic Chemistry starts publishing original research content that, nonetheless, preserves the Journal’s identity as a niche for a critical discussion of contemporary literature in inorganic chemistry) (For previous manifestations, see Comments Inorg. Chem. 2018, 38, 1–35; 2019, 39, 1–26; 2019, 39, 188–215; 2020, 40, 1–24; 2020, 40, 277–303; 2021, 1–46, doi: 10.1080/02603594.2021.1962310.). © 2022 Taylor & Francis Group, LLC.