Finite-time control of spacecraft and hardware in the loop tuning
Abstract
A nonlinear disturbance observer based on a super twisting controller is designed and implemented on the uncertain spacecraft attitude control subsystem simulator. The reaction wheels' angular momentum and their rate saturation are concerned in the controller design. The super twisting algorithm (STA) is devised in a way to make the reaction wheels into rest at the end of the maneuver. A nonlinear-disturbance-observer (NDO) is applied in estimating the external disturbances, unmodeled inertia moment, the eccentricity of rotation and mass center of simulator, and the reaction wheel saturation constraint. The finite-time stability of the closed-loop system is established according to the Lyapunov theory. The simulation and experimental results of this newly designed controller-observer on the spacecraft attitude simulator are compared in uncertain conditions. © 2022 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.