Mechanical properties of chiral and achiral silicon carbide nanotubes under oxygen chemisorption
Abstract
In this paper, the mechanical properties of fully oxygenated silicon carbide nanotubes (O2-SiCNTs) are explored using a molecular mechanics model joined with the density functional theory (DFT). The closed-form analytical expressions suggested in this study can easily be adapted for nanotubes with different chiralities. The force constants of molecular mechanics model proposed herein are derived through DFT within a generalized gradient approximation. Moreover, the mechanical properties of fully oxygenated silicon carbide (O2-SiC) sheet are evaluated for the case that the oxygen atoms are adsorbed on one side of the SiC sheet. According to the results obtained for the bending stiffness of O2-SiC sheet, one can conclude that the O2-SiC sheet has isotropic characteristics. © 2015, Springer-Verlag Berlin Heidelberg.

