Background
Type: Article

Remote sensing change detection: a comparative study of spectral distances

Journal: Geocarto International (17520762)Year: 2023Volume: 38Issue:
GoldDOI:10.1080/10106049.2023.2248059Language: English

Abstract

Several methods have been developed to detect differences between temporal satellite images for change detection. Image differencing, which is easy to compute and implement, does not require ground-based data. In this study, the performance of 11 other spectral distances was explored in addition to simple differencing for change detection. Moreover, the fusion of these distances was evaluated using various methods, including linear combination, classification, and majority voting. Comparing the results in different study areas showed that Pearson-Correlation and Spearman-Correlation were the most accurate distances. Additionally, the evaluation of the results indicated that the unsupervised fusion of different distances could increase the final accuracy by an average of 10%. Furthermore, the classification of distance images, which had slightly lower accuracy than the post-classification comparison of original images, was more accurate than the fusion of distances using these methods or thresholding the individual distances. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.