Background
Type: Article

Riemannian Geometry of Two Families of Tangent Lie Groups

Journal: Bulletin Of The Iranian Mathematical Society (10186301)Year: 1 February 2018Volume: 44Issue: Pages: 193 - 203
GreenDOI:10.1007/s41980-018-0014-0Language: English

Abstract

Using vertical and complete lifts, any left invariant Riemannian metric on a Lie group induces a left invariant Riemannian metric on the tangent Lie group. In the present article, we study the Riemannian geometry of tangent bundle of two families of real Lie groups. The first one is the family of special Lie groups considered by J. Milnor and the second one is the class of Lie groups with one-dimensional commutator groups. The Levi–Civita connection, sectional and Ricci curvatures have been investigated. © 2018, Iranian Mathematical Society.