Background
Type: Article

Slime Mold optimization with hybrid deep learning enabled crowd-counting approach in video surveillance

Journal: Neural Computing And Applications (09410643)Year: February 2024Volume: 36Issue: Pages: 2215 - 2229
Xu Z. Jain D.K. Shamsolmoali P.Goli A.a Neelakandan S. Jain A.
DOI:10.1007/s00521-023-09083-xLanguage: English

Abstract

Crowd counting (CC) and density estimation are crucial for ensuring public safety and security in surveillance videos with large audiences. As computer vision-based scene interpretation advances, automatic analysis of crowd situations is becoming increasingly prevalent. However, existing crowd analysis algorithms may not accurately interpret the video footage. To address this challenge, we propose a new approach called SMOHDL-CCA. This approach combines a Slime Mold Optimization algorithm with a Hybrid Deep Learning Enabled CC Approach. Our system uses the SMO algorithm with an optimized neural network search network (NASNet) model as the front-end to take advantage of transfer learning and flexible characteristics. The back-end model employs Dilated Convolutional Neural Networks, and the hyperparameter tuning process is done using the Chicken Swarm Optimization algorithm. Given a crowded video input frame, our SMOHDL-CCA model estimates the density map of the image. Each pixel value indicates the crowd density at the corresponding location in the picture. The final crowd count is obtained by summing all the values in the density map. We evaluated our proposed approach using three standard datasets. Furthermore, the state-of-the-art combining the proposed SMOHDL-CCA model achieves comparable performance such as improved precision is 96.97%, recall is 96.94%, and F1 score is 96.61%, reduced mean squared error of 61.15 values for the NWPU-crowd, UCF_QNRF, and World Expo datasets. © 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.


Author Keywords

Crowd countingDeep learningDensity map estimationDilated convolution neural networkHyperparameter tuningVideo surveillance

Other Keywords

Convolutional neural networksDeep learningLearning algorithmsMean square errorMoldsOptimizationSecurity systemsConvolution neural networkCrowd countingDensity map estimationDensity mapsDilated convolution neural networkHyper-parameterHyperparameter tuningMAP estimationVideo surveillanceConvolution