Squeezed-state generation via atomic collisions in a Bose-Einstein condensate inside an optical cavity
Abstract
In this paper, we investigate theoretically a system consisting of a one-dimensional Bose-Einstein condensate trapped inside the optical lattice of an optical cavity. In the weak-interaction regime and under the Bogoliubov approximation, the wave function of the Bose-Einstein condensate can be described by a classical field (condensate mode) having some quantum fluctuations (the Bogoliubov mode) about the mean value. Such a system behaves as a so-called atomic parametric amplifier, similar to an optical parametric amplifier, where the condensate and the Bogoliubov modes play, respectively, the roles of the pump field and the signal mode in the degenerate parametric amplifier and the s-wave scattering frequency of atom-atom interaction plays the role of the nonlinear gain parameter. We show that using the nonlinear effect of atomic collisions, how one can manipulate and control the state of the Bogoliubov mode and produce squeezed states. © 2014 © 2014 Taylor & Francis.