Time series models based on the unrestricted skew-normal process
Abstract
The standard location and scale unrestricted (or unified) skew-normal (SUN) family studied by Arellano-Valle and Genton [On fundamental skew distributions. J Multivar Anal. 2005;96:93–116] and Arellano-Valle and Azzalini [On the unification of families of skew-normal distributions. Scand J Stat. 2006;33:561–574], allows the modelling of data which is symmetrically or asymmetrically distributed. The family has a number of advantages suitable for the analysis of stochastic processes such as Auto-Regressive Moving-Average (ARMA) models, including being closed under linear combinations, being able to satisfy the consistency condition of Kolmogorov’s theorem and providing the guarantee of the existence of such a SUN stochastic process. The family is able to be represented in a hierarchical form which can be used for the ease of simulation. In addition, it facilitates an EM-type algorithm to estimate the model parameters. The performances and suitability of the proposed model are demonstrated on simulations and using two real data sets in applications. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.