Background
Type: Article

Geochemical Characterization, Tectonic Setting, and Metamorphic History of Metabasites from Jandaq Metamorphic Complex, Iran

Journal: Petrology (15562085)Year: April 2025Volume: 33Issue: Pages: 139 - 161
Heidarianmanesh A.Tabatabaei Manesh S.a Shirdashtzadeh N. Junior F.C. Parfenova O.V.
DOI:10.1134/S0869591124700371Language: English

Abstract

Abstract: Metabasites within the Jandaq Metamorphic Complex (JMC), Iran, offer valuable insights into the region’s magmatic and metamorphic history. Whole-rock geochemical data (major, trace, and rare earth elements) coupled with Sm-Nd isotopes were used to decipher the protolith origin and tectonic setting of formation of these metabasites. Our results demonstrate a predominantly ortho-amphibolitic nature for the JMC metabasites, with igneous protoliths ranging from basalt to andesite based on geochemical discrimination diagrams (Zr versus MgO and Sm/Nd). They exhibit geochemical affinities closer to enriched mid-oceanic ridge basalts (E-MORB) rather than normal MORB, implying a nascent oceanic basin within an intracontinental extensional setting. Trace element signatures (LILE enrichment, HFSE depletion) suggest a metasomatized subcontinental lithospheric mantle (SCLM) or a metasomatized lithospheric mantle beneath the oceanic crust as the parental magma source. Sm-Nd isotopic data suggest a potential plume source for the protoliths. These rocks were metamorphosed further by at least three metamorphic events: M1 (regional metamorphism, Barrovian-type; 616–687°C, 8–11 kbar), M2 (a brittle deformation event), and a later retrograde metamorphism (M3). These findings provide a comprehensive understanding of the geochemical characteristics, tectonic setting, and metamorphic evolution of JMC metabasites, shedding light on the geological history of the Jandaq region as a Paleo-Tethyan remnant. © Pleiades Publishing, Ltd. 2025.