Quantum Discord in Scattering Processes by Fixed Spin Impurities
Abstract
The dynamic behavior of the quantum discord in one-dimensional scattering of a qubit (a spin-1/2 particle) by single and double well-localized fixed spin impurities is investigated theoretically. It is assumed that the incident particle is scattered by the spin impurities through the Ising and/or Heisenberg interactions. These potentials create quantum mechanical correlation between the reflected and transmitted parts of the scattered system and the impurities. It is shown that the incident momentum, strength of the interaction potentials, and the separation between the impurities can be regarded as the control parameters for the quantum discord and concurrence manipulations. In particular, it has been found that the correlations are periodic functions of the wavelength of the incident particle when it is scattered by the double spin impurities. © 2014, Springer Science+Business Media New York.