Robust decentralized multi-machine power system stabilizer design using quantitative feedback theory
Abstract
A new robust power system stabilizer (PSS) design using Quantitative Feedback Theory (QFT) for damping electromechanical modes of oscillations and enhancing power system stability is proposed in this paper. The design procedure is carried out on a multi-input-multi-output (MIMO), non-minimum phase and unstable plant. A multi-machine electric power system with system parametric uncertainties is considered as a case study. To show the effectiveness of the QFT technique, the proposed method is compared with a conventional PSS (CPSS) whose parameters are tuned using the classical lead-lag compensation and genetic algorithms. Several nonlinear time-domain simulation tests indicate that the suggested control scheme is robust to the changes in the system parameters and also to successfully reject the disturbances. The results also show that the performance of the QFT method given in this paper is more desirable than CPSS and genetic algorithm (GA). © 2012 Elsevier Ltd. All rights reserved.