Finite element investigation into the thermal conductivity of carbon nanotube/aluminum nanocomposites
Abstract
This paper aims to study the thermal conductivity coefficient of aluminum matrices reinforced by single-walled carbon nanotubes. To obtain the thermal conductivity coefficient of the nanocomposites, a small temperature difference is applied on two opposite edges of a representative volume element. The nanotubes are distributed in Al matrix by using three different patterns, including random pattern, regular pattern with nanotube direction along the temperature difference and regular pattern with nanotube direction perpendicular to the temperature change. It is shown that the best enhancement in the thermal conductivity of aluminum matrix occurs by the regular distribution of the nanotubes along the temperature change. Also, increasing the volume fraction of nanotubes in aluminum matrix leads to increasing the thermal conductivity coefficient of the nanocomposite. © 2017 World Scientific Publishing Company.

