Articles
PLoS ONE (19326203)20(5 May)
Exosomes are extracellular vesicles, which are released into the extracellular space by all types of cells, especially stem cells. Compared with stem cells, exosomes are safer and can be considered one of the most promising therapeutic strategies for neurodegenerative disease. We examined the effect of exosomes derived from bone marrow mesenchymal stem cells (BM-MSC) on a rat model of Alzheimer’s disease (AD). For this purpose, male Wistar rats weighing 220–250g were used. For the induction of AD, rats received a daily dosage of 100mg/kg Aluminum chloride (Alcl3) by oral gavage for 60 days. Also, Primary BM-MSC was extracted from the femora of Wistar rats (male, 100–150g). Extracted exosomes were Characterized and Qualified using TEM Microscope and Zetasizer Nano. Specific markers of exosomes were evaluated by Flow cytometry. MSC-extracted exosomes (150 µg/µl) were injected 2 or 5 times into the animals via tail vein on specific days. Our data revealed that receiving exosomes significantly prevented AlCl3-induced enhancement of hippocampal APP gene expression, beta-amyloid plaque formation, impairment of passive avoidance learning and spatial memory. However, exosome injections in healthy subjects caused some negative effects such as spatial memory impairment. It seems, MSC-derived exosomes can be considered as a candidate to prevent AD progression. © 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Scientific Reports (20452322)14(1)
Recent years, the rapid advancement of technology has raised concerns. We studied the effects of prenatal exposure to 900 MHz radiofrequency (RF) from mobile phones and the protective effects of linalool on learning and memory, and anxiety in adolescent male and female offspring rats. Pregnant rats were divided into four groups: control, wave, wave + linalool, and linalool. Rats received linalool (25mg/kg) by gavage for 21 days. Irradiation was conducted from day 0 to day 21 of pregnancy. Offsprings underwent behavioral and electrophysiological tests on days 50 and 60 after birth. Exposure to RF during pregnancy caused anxiety-like behavior in the EPM test and impairment of learning and memory in the Morris water maze and shuttle box tests. Electrophysiological properties and synaptic plasticity of the dorsal hippocampal CA3-CA1 synapse showed a decrease in fEPSP amplitude and slope. The trace element levels in both male and female offspring were consistent across all groups compared to their respective controls. In the hippocampus tissue, the levels of Fe, Cu, and Mn, as well as the Cu/Zn ratio, were significantly higher in the exposed groups (wave groups) compared to their controls. Moreover, Zn levels were significantly lower in the hippocampus tissue of the exposed groups. Linalool administration mitigated the excessive increase in Fe, Cu, Mn, and Cu/Zn ratio and normalized the disrupted levels of trace elements, except for Zn levels in both male and female offspring. Sex differences were observed in the EPM and shuttle box tests, females were more sensitive than males. In summary, our study demonstrates that prenatal exposure to mobile phone radiation induces stress-like behaviors, disrupts learning and memory, alters hippocampal electrophysiological properties and trace element balance in offspring. Treatment with linalool mitigates these deleterious effects, highlighting its potential as a therapeutic intervention. These findings contribute to our understanding of the impact of prenatal environmental exposures on neurodevelopment and offer insights into potential strategies for neuroprotection. © The Author(s) 2024.
Kazemi, N.,
Rabbani, M.,
Noorbakhshnia, M.,
Razavi, S.M.,
Narimani, T.,
Naghsh, N. Scientific Reports (20452322)14(1)
Porphyromonas gingivalis (P. gingivalis) is one of the pathogens involved in gingival inflammation, which may trigger neuroinflammatory diseases such as Alzheimer’s disease (AD). This study aimed to investigate the protective (preventive and treatment) effects of a lactobacilli mixture combining Lactobacillus reuteri PTCC1655, Lactobacillus brevis CD0817, Lacticaseibacillus rhamnosus PTCC1637, and Lactobacillus plantarum PTCC1058 against P. gingivalis-induced gingival inflammation and AD-like pathology in rats. These probiotic strains exhibited cognitive enhancement effects, but this study proposed to assess their activity in a mixture. To propose a probable mechanism for P. gingivalis cognitive impairments, the TEs balance were analyzed in hippocampus and cortex tissues. Animals were divided into five groups: the control, lactobacilli, P. gingivalis, lactobacilli + P. gingivalis (prevention), and P. gingivalis + lactobacilli group (treatment) groups. The behavioral and histopathological changes were compared among them. Finally, The Trace elements (TEs) levels in the hippocampus and cortex tissues were analyzed. The palatal tissue sections of the P. gingivalis infected rats showed moderate inflammation with dense infiltration of inflammatory cells, a limited area of tissue edema, and vascular congestion. Additionally, passive avoidance learning and spatial memory were impaired. Histopathological tests revealed the presence of Aβ-positive cells in the P. gingivalis group. While the Aβ-positive cells decreased in the treatment group, their formation was inhibited in the preventive group. Administration of a mixture of lactobacilli (orally) effectively mitigated the gingival inflammation, Aβ production, and improved learning and memory functions. Moreover, Zn, Cu, and Mn levels in the hippocampus were dramatically elevated by P. gingivalis infection, whereas lactobacilli mixture mitigated these disruptive effects. The lactobacilli mixture significantly prevented the disruptive effects of P. gingivalis on gingival and brain tissues in rats. Therefore, new formulated combination of lactobacilli may be a good candidate for inhibiting the P. gingivalis infection and its subsequent cognitive effects. The current study aimed to evaluate the effects of a lactobacilli mixture to manage the disruptive effects of P. gingivalis infection on memory. © The Author(s) 2024.