Background
Type: Article

Efficient dye-sensitized solar cell based on a new porphyrin complex as an inorganic photosensitizer

Journal: Journal Of Chemical Sciences (09743626)Year: 1 December 2020Volume: 132Issue:
Nasirian A.Mirkhani V.aMoghadam M.aTangestaninejad S.a Mohammadpour-Baltork I.
DOI:10.1007/s12039-020-01781-6Language: English

Abstract

Abstract: The synthesis of new porphyrin complexes that can absorb light in a broad range of the spectrum is very important for getting a high efficiency in dye-sensitized solar cells. The primary reason for using these complexes is good photophysical characteristic like good absorption and high quantum efficiency. Most of the metal porphyrin shows good photophysical characteristics with changing their ligands. In this work, the synthesis of a new Zn-porphyrin complex, that has a good spectral and electrochemical characteristic, is reported. Then, this complex is used as a dye in dye-sensitized solar cells, using titanium dioxide as a semiconductor. The application of this complex in a dye-sensitized nanocrystalline TiO2 solar cell has indicated a short circuit density of 11.60 mA, an open circuit potential of 0.65 V with an overall efficiency of 5.33%. The overall conversion efficiency of this system is due to the efficient electron injection into the conduction band during light absorption. Graphic abstract: In this work, the synthesis of a new Zn-porphyrin complex, together with its spectral and electrochemical properties, is described. The application of this complex in a dye-sensitized nanocrystalline TiO2 solar cell indicated a short circuit density of 11.60 mA, an open circuit potential of 0.65V with an overall efficiency of 5.33%.[Figure not available: see fulltext.] © 2020, Indian Academy of Sciences.