Publication Date: 2006
Bioelectrochemistry (15675394)69(2)pp. 201-208
A method is developed for quantitative determination of glucose using electrochemical impedance spectroscopy (EIS). The method is based on immobilized glucose oxidase (GOx) on the topside of gold mercaptopropionic acid self-assembled monolayers (Au-MPA-GOx SAMs) electrode and mediation of electron transfer by parabenzoquinone (PBQ). The PBQ is reduced to hydroquinone (H2Q), which in turn is oxidized at Au electrode in diffusion layer. An increase in the glucose concentration results in an increase in the diffusion current density of the H2Q oxidation, which corresponds to a decrease in the faradaic charge transfer resistance (Rct) obtained from the EIS measurements. Glucose is quantified from linear variation of the sensor response (1/Rct) as a function of glucose concentration in solution. The method is straightforward and nondestructive. The dynamic range for determination of glucose is extended to more than two orders of magnitude. A detection limit of 15.6 μM with a sensitivity of 9.66 × 10- 7 Ω- 1 mM- 1 is obtained. © 2006 Elsevier B.V. All rights reserved.
Publication Date: 2006
Talanta (00399140)69(3)pp. 741-746
Fabrication and application of a voltammetric sensor based on gold 2-mercaptobenzothiazole self-assembled monolayer (Au-MBT SAM) for determination of silver ion is described. Preliminary experiments were performed to characterize the monolayer. The surface pKa determined for the MBT monolayer is 7.0. This value was obtained by impedimetric titration of the monolayer in the presence of Fe(CN)6 3-/4- as a redox probe. The extent of surface coverage was evaluated as 1.52 × 10-9 mol cm-2 based on charged consumed for reductive desorption of the monolayer in the 0.50 M NaOH solution. Then the sensor was used for determination of Ag(I) by square wave voltammetry. The parameters affecting the sensor response, such as pH and supporting electrolyte, were optimized. A dynamic calibration curve with two linear parts was obtained in the concentration ranges of 5 × 10-8-8 × 10-7 and 1 × 10-6-1 × 10-5 M of Ag(I). The detection limit adopted from cathodic striping square wave voltammetry was as 1 × 10-8 M for n = 7. Furthermore, the effect of potential interfering ions on the determination of Ag(I) was studied, and an appropriate method was used for the elimination of this effect. © 2005 Elsevier B.V. All rights reserved.
Publication Date: 2006
Analytical Chemistry (15206882)78(14)pp. 4957-4963
Fabrication and electrochemical characterization of a novel nanosensor for determination of Cu2+ in subnanomolar concentrations is described. The sensor is based on gold cysteamine self-assembled monolayer functionalized with salicylaldehyde by means of Schiff's base formation. Cyclic voltammetry, Electrochemical impedance spectroscopy (EIS), and electrochemical quartz crystal microbalance were used to probe the fabrication and characterization of the modified electrode. The sensor was used for quantitative determination of Cu2+ by the EIS in the presence of parabenzoquinone in comparison with stripping Osteryoung square wave voltammetry (OSWV). The attractive ability of the sensor to efficiently preconcentrate trace amounts of Cu2+ allowed a simple and reproducible method for copper determination. A wide range linear calibration curve was observed, 5.0 × 10-10-5.0 × 10-6 and 5.0 × 10-10-5.0 × 10-6 M Cu2+, by using the EIS and OSWV, respectively. Moreover, the sensor presented excellent stability with lower than 10% change in the response, as tested for more than three months daily experiments, and a high repeatability with relative standard deviations of 6.1 and 4.6% obtained for a series of eight successive measurements in 5.0 × 10-7 M Cu2+ solution, by the EIS and OSWV, respectively. © 2006 American Chemical Society.
Publication Date: 2006
Sensors and Actuators B: Chemical (09254005)115(2)pp. 614-621
A monolayers of cysteamine (CA) was prepared on a polycrystalline gold electrode through self-assembly procedure to produce a gold cysteamine self-assembled monolayers (Au-CA SAMs) modified electrode. Characterization of the modified electrode was performed by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The EIS was used to evaluate pKa of the adsorbed CA on the gold surface, and a value of 7.6 was obtained for the Au-CA surface pKa. The charged terminal groups of monolayers served for determination of dopamine (DA) in the presence of high concentration of ascorbic acid (AA) using differential pulse voltammetry (DPV). Well-separated DA and AA voltammetric waves (∼330 mV) were observed at the Au-CA SAMs electrodes in an acidic solution. A calibration curve with two linear parts was obtained for DA, 6.00 × 10-6 to 3.84 × 10-4 M and 3.36 × 10-4 to 9.50 × 10-3 M, with correlation coefficients 0.997 and 0.992, respectively. The detection limit for DA was found to be 2.31 μM in the presence of 1.0 mM AA. The apparent charge transfer rate constants (kapp) of AA and DA were evaluated by using EIS measurements on the modified electrode as 44.0 cm s-1 × 10-8 cm s-1 and 2.45 cm s-1 × 10-8 cm s-1, respectively. © 2005 Elsevier B.V. All rights reserved.