Publication Date: 2003
Ground Water (0017467X)41(5)pp. 602-607
The Theis type curve matching method and the Cooper-Jacob semilog method are commonly used for estimation of transmissivity and storage coefficient of infinite, homogeneous, isotropic, confined aquifers from drawdown data of a constant rate pumping test. Although these methods are based on drawdown data, they are often applied indiscriminately to analyze both drawdown and recovery data. Moreover, the limitations of drawdown type curve to analyze recovery data collected after short pumping times are not well understood by the practicing engineers. This often may result in an erroneous interpretation of such recovery data. In this paper, a novel but simple method is proposed to determine the storage coefficient as well as transmissivity from recovery data measured after the pumping period of an aquifer test. The method eliminates the dependence on pumping time effects and has the advantage of employing only one single recovery type curve. The method based on the conversion of residual drawdown to recovered drawdown (buildup) data plotted versus a new equivalent time (Δt X tp/tp + Δt). The method uses the recovery data in one observation point only, and does not need the initial water level h0, which may be unknown. The accuracy of the method is checked with three sets of field data. This method appears to be complementary to the Cooper-Jacob and Theis methods, as it provides values of both storage coefficient and transmissivity from recovery data, regardless of pumping duration.
Publication Date: 2003
Engineering Geology (00137952)68(3-4)pp. 225-236
Site investigation and evaluation of properties of soil or rock are important aspects of geotechnical design. Determination of the ground stiffness is one of the important parameters in geotechnical engineering. Since the measurement of shear modulus is very sensitive to soil disturbance, especially for sand, determination of the stiffness of soil in the field is more reliable than in laboratory tests on sampled specimens. Measurement of shear modulus is one of the most common applications of self-boring pressuremeter testing. As an in situ device, the pressuremeter provides a unique method for assessing directly the in situ shear modulus of a soil. This paper describes a laboratory study of silica sand stiffness, which varies with stress level and strain amplitude. The results show that the elastic shear modulus value is mainly dependent on the value of the mean effective stress and relative density. © 2002 Elsevier Science B.V. All rights reserved.
Publication Date: 2004
Ground Water (0017467X)42(1)pp. 2-2
Publication Date: 2004
Carbonates and Evaporites (08912556)19(1)pp. 67-74
The Gavkhoni Playa Lake is located to the southeast of Esfahan, Iran. It is surrounded by the Varzaneh aeolian sand field to the west and alluvial/fluvial sediments to all other directions. It is typical of the few permanent lakes within closed drainage basins in Iran. The properties of intermittent fine-grained and coarse-grained siliciclastic and finally fine-grained evaporite sediments suggest that the basin was influenced repeatedly by wet and dry periods. During periods of flooding, it had been a shallow permanent lake. With increasing aridity, the middle of the lake became increasingly restricted and shallower which resulted in the formation of a salt pan, contributing to the nature of the lake brine. Due to the enclosed nature of the lake system, the water chemistry of Gavkhoni Playa Lake is dominated by sodium and chloride ions but shows wide variations in composition and concentration through time and location. The percentage of Na+(1,012 to 10,3040 ppm), Cl(4,118 to 19,9365 ppm), Mg2+ (360 to 25,691 ppm), and K+(78 to 3,570 ppm) is highest toward the south and at a minimum in the north. Calcium content, ranging from 160 to 3,480 ppm, appears highest in the north. The percentage of strontium (5 to 292 ppm) with the highest value to the north, is extremely low in comparison to other elements. Sulfate is another abundant anion in the brines with the highest content of 22,051 ppm. Bicarbonate is a minor anion ranging from 73 to 450 ppm with the highest values to the north and west. The concentration of sulfate and bicarbonate does not change regularly in the brines from north to south, nor does it vary seasonally. The chemical analysis of the brine shows that it becomes progressively depleted in carbonate and sulfates from the margins to the center of the lake. It ultimately became a Na+, (Mg2+), Cl-brine type in the northern section and a Na+, Mg2+, Cl-brine type in the central part of the lake. After complete desiccation, the mineral assemblage exhibited halite, camallite, bischofite, and tachyhydrite in abundance.
Publication Date: 2004
Ground Water (0017467X)42(1)pp. 2-2