Articles
International Journal of Biological Macromolecules (01418130)295
Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose. The supple superabsorbent of amide-2,4 modified cellulose-g-poly acrylic acid (Am-2,4 modified cellulose-g-poly (AA)) to reduce water consumption in agriculture and facilitate rooting and root penetration in clay was used. To investigate the effectiveness of superabsorbent in agriculture, its water retention in treated soil (0.2 %) with different temperatures, pHs, and soil textures (sandy loam (SL), sandy clay loam (SCL), clay loam (CL), and loam (L)) was studied. Also, water retention in SCL soil in 2 cycles showed good results. Furthermore, the study includes the optimization of the parameters affecting the water absorption capacity of the superabsorbent, which leads to the absorption of 1253.20 ± 49.67 g/g in distilled water, 86.88 ± 13.36 g/g in 1.0 wt% NaCl solution, and 395 ± 14.86 g/g in tap water under optimal conditions. © 2025
Industrial Crops and Products (09266690)231
Due to the rising costs, environmental concerns, and limited availability of conventional fertilizers, developing eco-friendly, multi-functional fertilizers is crucial for sustainable agriculture. This study introduces a cellulose-based superabsorbent polymer (SAP) as a carrier for controlled-release urea fertilizer. The resulting cellulose-based slow-release fertilizer (CSRF) effectively absorbs and retains water, enabling gradual urea release. The performance of CSRF was evaluated under various conditions. Water absorbency kinetics followed Fickian diffusion in saline solutions, whereas non-Fickian diffusion was observed in distilled water. The impact of pH on urea release was investigated, and the Korsmeyer-Peppas model accurately described the release kinetics in all pH environments. Column leaching experiments demonstrated a significant reduction in urea leaching, also 61.46 % of the urea was released over 42 days in soil. Furthermore, CSRF exhibited biodegradability in soil, with 43.73 % degradation after 60 days. The polymer also showed good reusability in both distilled water and saline solutions. Pot experiments confirmed the positive impact of CSRF on wheat growth under water-stress conditions. Increased chlorophyll content in wheat leaves further highlights the potential of CSRF to enhance plant health and yield. These findings suggest that CSRF can contribute to sustainable agriculture by improving water use efficiency, reducing fertilizer loss, and promoting plant growth. © 2025
International Journal of Biological Macromolecules (01418130)254
Cellulose/poly (glycerol citrate) reinforced with thiol-rich polyhedral oligomeric silsesquioxane and apple peel (POSS-SH@CAG-CEL/AP) was synthesized using gelation method in the presence of glutaraldehyde as a crosslinker agent and used as an efficient composite hydrogel for elimination of Tl(Ι) from aqueous solutions. This composite hydrogel and synthesized thiol-rich polyhedral oligomeric silsesquioxane were characterized by elemental analysis, FT-IR, NMR, TGA, and FE-SEM techniques. The effects of synthetic and environmental parameters on the adsorption capacity of the composite hydrogel were investigated and it was found that thiol-rich polyhedral oligomeric silsesquioxane has improved the hydrogel properties including the Tl(Ι) uptake and the thermal stability. The maximum adsorption capacity of 352.3 mg g−1 was obtained within 30 min under optimum reaction conditions. A typical Langmuir adsorption isotherm with was observed for adsorption of Tl(I) onto POSS-SH@CAG-CEL/AP and pseudo-second-order kinetic model provided the best correlation between experimental data. Thermodynamic studies showed that the Tl(I) adsorption was spontaneous process and exothermic. Also, the reusability tests confirmed that the POSS-SH@CAG-CEL/AP can be reused for four times without any remarkable change in its adsorption capacity. Thus, this reusable biobased composite hydrogel can be an ideal candidate for elimination of Tl(I) from aqueous solutions. © 2023
The eco-friendly polymeric nanocomposite hydrogels were prepared by incorporating dendritic fibrous nanosilica (DFNS) and apple peel (AP) as reinforcements into the crosslinked polymer produced by cellulose (CL) and poly (glycerol tartrate) (TAGL) via gelation method and used for efficient adsorption of Pb2+, Co2+, Ni2+, and Cu2+ metal ions. DFNS and DFNS/TAGL-CL/AP samples were characterized by FESEM, FTIR, TEM, TGA, and nitrogen adsorption/desorption methods. The results of TGA analysis showed that the thermal stability of the prepared hydrogels improved significantly in the presence of DFNS. Both synthetic and environmental parameters were investigated and the adsorption capacity reached 560.2 (pH = 4) and 473.12 (pH = 5) mg/g for Pb2+ and Cu2+ respectively, using initial ion concentration of 200 mg/L. Also, the maximum adsorption capacity was 340.9, and 350.3 mg/g for Co2+ and Ni2+, respectively under optimum conditions (pH = 6, initial ion concentration of 100 mg/L). These experiments indicated that the DFNS/TAGL-CL/AP nanocomposite hydrogel has an excellent performance in removal of Pb2+ and can adsorb this toxic metal in only 30 min while the optimum contact time for other metals was 60 min. Pseudo-second-order and Langmuir models were used to define the kinetic and adsorption isotherms, respectively and thermodynamic studies demonstrated that the adsorption was endothermic for Co2+, Ni2+ and Cu2+, exothermic for Pb2+, and spontaneous in nature for all metal ions. Furthermore, the reusability tests indicated that the hydrogels could maintain up to 93% of their initial adsorption capacity for all metal ions after four cycles. Therefore, the prepared nanocomposite hydrogels can be suggested as efficient adsorbents to remove the toxic metals from wastewater. © 2023