The Education Department is a core unit within the faculty, responsible for planning, organizing, and overseeing educational activities. It works closely with academic staff to design and update course curricula, coordinate class schedules, and enhance the overall quality of teaching. The department aims to provide a supportive environment for effective learning and the academic development of students. It also plays a key role in academic advising, addressing educational concerns, and organizing consultation sessions. By applying modern teaching methods and responding to current educational needs, the Education Department strives to improve the learning process and contribute to student success.
Proceedings of SPIE - The International Society for Optical Engineering (1996756X)3957pp. 398-402
Virtual Reality (VR) is a possible which brings users to the reality by computer and Virtual Environment (VE) is a simulated world which takes users to any points and directions of the object. VR and VE can be very useful if accurate and precise data are used, and allows users to work with realistic model. Photogrammetry is a technique which is able to collect and provide accurate and precise data for building 3D model in a computer. Data can be collected from various sensors and cameras, and methods of data collector are vary based on the method of image acquiring. Indeed VR includes real-time graphics, three-dimensional model, and display and it has application in the entertainment industry, flight simulators, industrial design. Above definitions describe the relationship between VR and VE with photogrammetry. This paper describes a reliable and precis method of data acquiring based on close range photogrammetry for building a VR model. The purpose of this project is to make a real possibility for seismic designers to investigate all effects of shaking on a real building. Minar Gonban is an ancient building with two amazing minarets at Esfehan IRAN. While one of them was shaken the second one started to shake. The project is fulfilled on this building because building simply can be shaken and its effects can be investigated. The building was photographed by multiple movie cameras and photo cameras. Sequence images were restored in a computer for creating sequence models of building. A VR model is builded based on extracted data from photogrammetry images. The developed VR model is precise and reliable and provides real possibility for users to investigate the effects of shaking on the building. The developed VR model is based on real data. The results verify a reliable VR can be useful for human life because one of its application can help to investigate effects of earthquake on the building and duce its casualty.
It is possible to use single frequency GPS receivers to estimate the Total Electron Content (TEC). In this research, we improved an algorithm presented by Giffard [2], that is based on a least squares solution. We investigated the effect of the use of different weights (elevation of satellites, signal to noise ratio, combination of elevation and signal to noise ratio) and different block sizes on TEC estimates. We found that these parameters had a significant impact on TEC estimates based on this algorithm. Our research is based on observations at the GPS site of the Esfahan University made with single frequency 12-channel Leica System 500 receivers.
CTIT workshop proceedings series (16821750)37pp. 823-827
In this paper we present and develop a set of algorithms, mostly based on morphological operators, for automatic colonic polyp detection applied to computed tomography (CT) scans. Initially noisy images are enhanced using Morphological Image Cleaning (MIC) algorithm. Then the colon wall is segmented using region growing followed by a morphological grassfire operation. In order to detect polyp candidates we present a new Automatic Morphological Polyp Detection (AMPD) algorithm. Candidate features are classified as polyps and non-polyps performing a novel Template Matching Algorithm (TMA) which is based on Euclidean distance searching. The whole technique achieved 100% sensitivity for detection of polyps larger than 10 mm and 81.82% sensitivity for polyps between 5 to 10 mm and expressed relatively low sensitivity (66.67%) for polyps smaller than 5 mm. The experimental data indicates that our polyp detection technique shows 71.73% sensitivity which has about 10 percent improvement after adding the noise reduction algorithm.