پژوهشهای فلسفی کلامی (17359791)(25)pp. 60-87
از پیچیدهترین مباحث فلسفی که سرنوشت بسیاری از مسائل به آن وابسته است، بحث علم وادراک است. و از جمله پرسش هایجدّی در این خصوص، مقدار اعتبار معلومات ودانش ما انسانهاست و اینکه واقعنمایی علم چگونه و در چیست؟
در میان اندیشمندان معاصر، علامه طباطبائی(ره) بیشازسایرین، به اینمهم توجه کرده ومباحث ارزشمندی را دربارة این موضوع ارائه داده اند. ایشان با ارجاع تمام علوم حصولی به علوم حضوری و پایهدانستن علوم حضوری، اولاً، رویکرد نوینی در این قلمرو داشته و ثانیاً، به توجیه خطای حواس دست یافتند.
در این نوشتار، ضمن تحلیل و تبیین دیدگاه علامه طباطبائی (ره) در باب ارزش معلومات و توجیه خطای حواس و یادآوری نکاتی چند در مورد این نظریه، سعی بر این داشته ایم تا تقریری منسجمتر با برخورداری از کمترین اشکال را در خصوص گونة واقعنمایی علم ارائه کنیم.
Physical Review A - Atomic, Molecular, and Optical Physics (10502947)78(1)
The Huttner-Barnett model is extended to a magnetodielectric medium by adding a matter field to this model. The eigenoperators for the coupled system are calculated and electromagnetic field is written in terms of these operators. The electric and magnetic susceptibilities of the medium are explicitly derived and shown to satisfy the Kramers-Kronig relations. It is shown that the results obtained in this extended model are equivalent to their counterparts obtained in the phenomenological methods. © 2008 The American Physical Society.
Journal of Physics B: Atomic, Molecular and Optical Physics (13616455)42(7)
In this paper, by extending the Lagrangian of the Huttner-Barnett model an electromagnetic field in a nonhomogeneous and anisotropic magnetodielectric medium is quantized canonically. In this model, Maxwell equations in the medium are obtained and solved using the Green function technique. The noise operators are found and the results are compared with the phenomenological method. © 2009 IOP Publishing Ltd.
Physical Review A - Atomic, Molecular, and Optical Physics (10502947)81(5)
We investigate the Casimir effect in the presence of a medium by quantizing the electromagnetic field in the presence of a magnetodielectric medium using the path-integral technique. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained. The Lifshitz formula is recovered and in the absence of a medium the results tend to the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum. © 2010 The American Physical Society.
Physical Review A - Atomic, Molecular, and Optical Physics (10502947)82(4)
Path-integral formalism is employed to study normal and lateral Casimir interactions in a system composed of a dispersive medium surrounded by two semi-infinite ideal conductors. The dispersive medium is modeled by a continuum of harmonic oscillators, and it is shown that for smooth conductors, the normal force at small distances in the presence of a dispersive medium coincides with the original Casimir force, while at large distances, it tends to the original form with a renormalized coefficient. The correction to the normal force because of the roughness on one of the conductors is calculated. When the inner surfaces of both conductors have roughness, the lateral Casimir interaction occurs because of translational symmetry breaking, which is studied. It is shown that both normal and lateral Casimir forces in the presence of a dispersive medium are weaker in comparison with the original one and are proportional to the roughness amplitude squared. The dependence of the normal and lateral interactions on the memory and strength of the dispersive medium is considered. © 2010 The American Physical Society.
Annals of Physics (00034916)326(3)pp. 657-667
By using the path-integral formalism, electromagnetic field in the presence of some linear, isotropic magnetodielectric slabs is quantized and related correlation functions are found. In the framework of path-integral techniques, Casimir force between two infinitely large, parallel and ideal conductors, with a different number of magnetodielectric slabs in between, is obtained by calculating the Green's function corresponding to each geometry. © 2011 Elsevier Inc.
European Physical Journal D (14346060)63(3)pp. 473-482
The role of spin-orbit interaction arises from the Dzyaloshinskii-Moriya anisotropic antisymmetric interaction on the entanglement transfer via an antiferromagnetic XXZ Heisenberg chain is investigated. From symmetrical point of view the XXZ Hamiltonian with Dzyaloshinskii-Moriya interaction can be replaced by a modified XXZ Hamiltonian which is defined by a new exchange coupling constant and rotated Pauli operators. The modified coupling constant and the angle of rotations depend on the strength of Dzyaloshinskii-Moriya interaction. In this paper we study the dynamical behavior of the entanglement propagation through a system which is consist of a pair of maximally entangled spins coupled to one end of the chain. The calculations are performed for the ground state and the thermal state of the chain separately. In both cases the presence of this anisotropic interaction make our channel more efficient. We show for large values of the strength of this interaction a large family of XXZ chains becomes efficient quantum channels for whole values of anisotropy parameter in the region -2 ≤ Δ ≥ 2. © 2011 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.